Ultrafast carrier dynamics of carbon nanodots in different pH environments.
نویسندگان
چکیده
Ultrafast carrier relaxation dynamics in fluorescent carbon nanodots is investigated by femtosecond transient absorption spectra at different pH environments so as to understand the mechanism of fluorescence for the first time. Utilizing multi-wavelength global analysis to fit the measured signal via a sequential model, four different relaxation channels are found, which are attributed to electron-electron scattering and surface state trapping, optical phonon scattering, acoustic phonon scattering and electron-hole recombination respectively. The results reveal that the surface states are mainly composed of different oxygen-containing functional groups (epoxy, carbonyl and carboxyl) and carbon atoms on the edge of the carbon backbone and can effectively trap a large number of photo-excited electrons. The deprotonation of carboxyl groups at high pH will change the distribution of π electron cloud density between the carbon backbone and surface states and consequently, compared with the excited electrons in the acidic and neutral environments, those in the alkaline environment can be more easily trapped by the surface within 1 ps, thereby giving rise to stronger fluorescence emission.
منابع مشابه
Ultrafast carrier dynamics in single-wall carbon nanotubes.
Time-resolved carrier dynamics in single-wall carbon nanotubes is investigated by means of two-color pump-probe experiments. The recombination dynamics is monitored by probing the transient photobleaching observed on the interband transitions of the semiconducting tubes. This dynamics takes place on a 1 ps time scale which is 1 order of magnitude slower than in graphite. Transient photoinduced ...
متن کاملUltrafast Hot Carrier Dynamics in GaN and Its Impact on the Efficiency Droop.
GaN is a key material for lighting technology. Yet, the carrier transport and ultrafast dynamics that are central in GaN light-emitting devices are not completely understood. We present first-principles calculations of carrier dynamics in GaN, focusing on electron-phonon (e-ph) scattering and the cooling and nanoscale dynamics of hot carriers. We find that e-ph scattering is significantly faste...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملUltrafast Spectroscopy of Carbon Nanotubes
Time-domain spectroscopic studies provide a unique perspective on the materials properties and the microscopic processes underlying them in carbon nanotubes. Ultrafast spectroscopy is used to study the dynamics and kinetics of scattering and relaxation processes from the femtosecond (1 fs ≡ 10−15 s) to the picosecond timescale. This provides crucial information on carrier and exciton dynamics t...
متن کاملUltrafast Optical Spectroscopy of Micelle-Suspended Single-Walled Carbon Nanotubes
We present results of wavelength-dependent ultrafast pump-probe experiments on micelle-suspended single-walled carbon nanotubes. The linear absorption and photoluminescence spectra of the samples show a number of chirality-dependent peaks, and consequently, the pump-probe results sensitively depend on the wavelength. In the wavelength range corresponding to the second van Hove singularities (VH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 5 شماره
صفحات -
تاریخ انتشار 2016